Sejam duas funções. Dizemos que f e g são iguais se
são dadas pela mesma regra de associação, ou seja, se .
"A = C": A condição acima só tem sentido (podendo ser falsa) se f e g tiverem o mesmo domínio (no caso A=C).
"B = D": E também é indispensável que f e g tenham o mesmo contradomínio.
Por esta razão, podemos considerar iguais duas funções de contradomínios diferentes. Mais delicado é considerar que funções de domínios diferentes sejam iguais. Entretanto, cometemos este abuso quando, por exemplo, o domínio de uma função contém o domínio da outra. Quando a prudência mandar, devemos lidar com os conceitos de restrição e extensão.
Sejam tais que . Dizemos que f é invertível, que g é a inversa de f e escrevemos .
Não devemos confundir da definição acima com . Sempre que aplicamos em conjuntos está subentendido que trata-se da imagem inversa. Quando se aplica num elemento y, pode-se entender como , caso a inversa exista, ou , a imagem inversa de um conjunto unitário.
Repare que intercambiando f com g, A com B e x com y as hipóteses da definição de função inversa não mudam, porém a conclusão dirá que f é a inversa de g. Concluímos que f é a inversa de g se, e somente se, g é a inversa de f. Se é injetiva, então mesmo quando ela não for sobrejetiva, ainda poderemos considerar sua função inversa ficando subentendido que o domínio de é f(A) (e não B). Desta forma .