Origem: Wikilivros, livros abertos por um mundo aberto.
Calcular o diâmetro que a tubulação do exercício E11 precisaria ter para que se garantisse uma vazão mínima de 10 l/s através de um tubo de 50 m de comprimento, considerando que a altura da água no reservatório será mantida no mínimo em 5 m.
Do exercício E12 , sabemos que
g
Δ
h
=
1
2
(
N
f
i
+
N
f
l
L
D
+
1
)
v
¯
2
⇒
N
f
l
D
=
1
L
(
2
g
Δ
h
v
¯
2
−
N
f
i
−
1
)
{\displaystyle g\;\Delta h\;=\;{\frac {1}{2}}\;\left(N_{fi}\;+\;N_{fl}\;{\frac {L}{D}}\;+\;1\right){\bar {v}}^{2}\;\;\;\Rightarrow {\frac {N_{fl}}{D}}\;=\;{\frac {1}{L}}\;\left({\frac {2g\;\Delta h}{{\bar {v}}^{2}}}\;-\;N_{fi}\;-\;1\right)}
Assim
0.25
[
l
o
g
(
e
3.7
D
+
5.74
N
R
e
−
0.9
)
]
−
2
D
=
1
L
(
2
g
Δ
h
(
4
Φ
π
D
2
)
2
−
N
f
i
−
1
)
{\displaystyle {\frac {0.25\left[log\left({\frac {e}{3.7\;D}}\;+\;5.74\;N_{Re}^{-0.9}\right)\right]^{-2}}{D}}\;=\;{\frac {1}{L}}\;\left({\frac {2g\;\Delta h}{\left({\frac {4\Phi }{\pi D^{2}}}\right)^{2}}}\;-\;N_{fi}\;-\;1\right)}
1
4
D
⋅
[
l
o
g
(
e
3.7
D
+
5.74
N
R
e
−
0.9
)
]
2
=
(
π
2
g
D
4
Δ
h
8
Φ
2
−
N
f
i
−
1
)
L
{\displaystyle {\frac {1}{4D\cdot \left[log\left({\frac {e}{3.7\;D}}\;+\;5.74\;N_{Re}^{-0.9}\right)\right]^{2}}}\;=\;{\frac {\left({\frac {\pi ^{2}gD^{4}\;\Delta h}{8\Phi ^{2}}}\;-\;N_{fi}\;-\;1\right)}{L}}}
4
D
⋅
[
l
o
g
(
e
3.7
D
+
5.74
N
R
e
−
0.9
)
]
2
⋅
(
π
2
g
D
4
Δ
h
8
Φ
2
−
N
f
i
−
1
)
=
L
{\displaystyle 4D\cdot \left[log\left({\frac {e}{3.7\;D}}\;+\;5.74\;N_{Re}^{-0.9}\right)\right]^{2}\cdot \left({\frac {\pi ^{2}gD^{4}\;\Delta h}{8\Phi ^{2}}}\;-\;N_{fi}\;-\;1\right)\;=\;L}
4
D
⋅
[
l
o
g
(
0.15
m
m
3.7
D
+
5.74
N
R
e
−
0.9
)
]
2
⋅
(
3.14
2
⋅
9.8
m
/
s
2
⋅
5
m
8
⋅
(
10
l
/
s
)
2
⋅
D
4
−
0
,
5
−
1
)
=
50
m
{\displaystyle 4D\cdot \left[log\left({\frac {0.15\;mm}{3.7\;D}}\;+\;5.74\;N_{Re}^{-0.9}\right)\right]^{2}\cdot \left({\frac {3.14^{2}\cdot 9.8\;m/s^{2}\cdot 5\;m}{8\cdot (10\;l/s)^{2}}}\cdot D^{4}\;-\;0,5\;-\;1\right)\;=\;50\;m}
4
D
⋅
[
l
o
g
(
0.00015
m
3.7
D
+
5.74
N
R
e
−
0.9
)
]
2
⋅
(
3.14
2
⋅
9.8
m
/
s
2
⋅
5
m
8
⋅
(
0.010
m
3
/
s
)
2
⋅
D
4
−
0
,
5
−
1
)
=
50
m
{\displaystyle 4D\cdot \left[log\left({\frac {0.00015\;m}{3.7\;D}}\;+\;5.74\;N_{Re}^{-0.9}\right)\right]^{2}\cdot \left({\frac {3.14^{2}\cdot 9.8\;m/s^{2}\cdot 5\;m}{8\cdot (0.010\;m^{3}/s)^{2}}}\cdot D^{4}\;-\;0,5\;-\;1\right)\;=\;50\;m}
O cálculo é difícil, pois tanto o Número de Reynolds quanto o coeficiente de atrito dependem do diâmetro do tubo. Por isso, será preciso usar um processo iterativo.
No primeiro passo, consideremos um diâmetro de 50 mm. Assim
N
R
e
=
4
ρ
0
Φ
π
μ
0
D
=
4
⋅
1000
k
g
/
m
3
⋅
10
l
/
s
3.14
⋅
0
,
0010
k
g
⋅
m
−
1
⋅
s
−
1
⋅
50
m
m
{\displaystyle N_{Re}\;=\;{\frac {4\rho _{0}\;\Phi }{\pi \mu _{0}D}}\;=\;{\frac {4\cdot 1000\;kg/m^{3}\cdot 10\;l/s}{3.14\cdot 0,0010\;kg\cdot m^{-1}\cdot s^{-1}\cdot 50\;mm}}}
N
R
e
=
4
⋅
1000
k
g
/
m
3
⋅
0.010
m
3
/
s
3.14
⋅
0
,
0010
k
g
⋅
m
−
1
⋅
s
−
1
⋅
0.050
m
=
250000
{\displaystyle N_{Re}\;=\;{\frac {4\cdot 1000\;kg/m^{3}\cdot 0.010\;m^{3}/s}{3.14\cdot 0,0010\;kg\cdot m^{-1}\cdot s^{-1}\cdot 0.050\;m}}\;=\;250000}
Calcula-se então o lado esquerdo da equação:
4
⋅
50
m
m
⋅
[
l
o
g
(
0.00015
m
3.7
⋅
50
m
m
+
5.74
⋅
250000
−
0.9
)
]
2
⋅
(
3.14
2
⋅
9.8
m
/
s
2
⋅
5
m
8
⋅
(
0.010
m
3
/
s
)
2
⋅
(
50
m
m
)
4
−
0
,
5
−
1
)
=
{\displaystyle 4\cdot 50\;mm\cdot \left[log\left({\frac {0.00015\;m}{3.7\cdot 50\;mm}}\;+\;5.74\cdot 250000^{-0.9}\right)\right]^{2}\cdot \left({\frac {3.14^{2}\cdot 9.8\;m/s^{2}\cdot 5\;m}{8\cdot (0.010\;m^{3}/s)^{2}}}\cdot (50\;mm)^{4}\;-\;0,5\;-\;1\right)\;=\;}
4
⋅
0.050
m
⋅
[
l
o
g
(
0.00015
m
3.7
⋅
0.050
m
+
5.74
⋅
250000
−
0.9
)
]
2
⋅
(
3.14
2
⋅
9.8
m
/
s
2
⋅
5
m
8
⋅
(
0.010
m
3
/
s
)
2
⋅
(
0.050
m
)
4
−
0
,
5
−
1
)
=
−
1
,
5
m
{\displaystyle 4\cdot 0.050\;m\cdot \left[log\left({\frac {0.00015\;m}{3.7\cdot 0.050\;m}}\;+\;5.74\cdot 250000^{-0.9}\right)\right]^{2}\cdot \left({\frac {3.14^{2}\cdot 9.8\;m/s^{2}\cdot 5\;m}{8\cdot (0.010\;m^{3}/s)^{2}}}\cdot (0.050\;m)^{4}\;-\;0,5\;-\;1\right)\;=\;-\;1,5\;m}
O valor obtido muito baixo, o que indica que o diâmetro precisa aumentar bastante.
Consideremos um diâmetro de 300 mm. Assim
N
R
e
=
4
⋅
1000
k
g
/
m
3
⋅
0.010
m
3
/
s
3.14
⋅
0
,
0010
k
g
⋅
m
−
1
⋅
s
−
1
⋅
0.30
m
=
42000
{\displaystyle N_{Re}\;=\;{\frac {4\cdot 1000\;kg/m^{3}\cdot 0.010\;m^{3}/s}{3.14\cdot 0,0010\;kg\cdot m^{-1}\cdot s^{-1}\cdot 0.30\;m}}\;=\;42000}
Calcula-se então o lado esquerdo da equação:
4
⋅
0.30
m
⋅
[
l
o
g
(
0.00015
m
3.7
⋅
0.30
m
+
5.74
⋅
250000
−
0.9
)
]
2
⋅
(
3.14
2
⋅
9.8
m
/
s
2
⋅
5
m
8
⋅
(
0.010
m
3
/
s
)
2
⋅
(
0.30
m
)
4
−
0
,
5
−
1
)
=
47
m
{\displaystyle 4\cdot 0.30\;m\cdot \left[log\left({\frac {0.00015\;m}{3.7\cdot 0.30\;m}}\;+\;5.74\cdot 250000^{-0.9}\right)\right]^{2}\cdot \left({\frac {3.14^{2}\cdot 9.8\;m/s^{2}\cdot 5\;m}{8\cdot (0.010\;m^{3}/s)^{2}}}\cdot (0.30\;m)^{4}\;-\;0,5\;-\;1\right)\;=\;47\;m}
O valor obtido ainda está um pouco baixo, o que indica que o diâmetro precisa aumentar um pouco mais.
Consideremos um diâmetro de 310 mm. Assim
N
R
e
=
4
⋅
1000
k
g
/
m
3
⋅
0.010
m
3
/
s
3.14
⋅
0
,
0010
k
g
⋅
m
−
1
⋅
s
−
1
⋅
0.31
m
=
41000
{\displaystyle N_{Re}\;=\;{\frac {4\cdot 1000\;kg/m^{3}\cdot 0.010\;m^{3}/s}{3.14\cdot 0,0010\;kg\cdot m^{-1}\cdot s^{-1}\cdot 0.31\;m}}\;=\;41000}
Calcula-se então o lado esquerdo da equação:
4
⋅
0.31
m
⋅
[
l
o
g
(
0.00015
m
3.7
⋅
0.31
m
+
5.74
⋅
250000
−
0.9
)
]
2
⋅
(
3.14
2
⋅
9.8
m
/
s
2
⋅
5
m
8
⋅
(
0.010
m
3
/
s
)
2
⋅
(
0.31
m
)
4
−
0
,
5
−
1
)
=
54
m
{\displaystyle 4\cdot 0.31\;m\cdot \left[log\left({\frac {0.00015\;m}{3.7\cdot 0.31\;m}}\;+\;5.74\cdot 250000^{-0.9}\right)\right]^{2}\cdot \left({\frac {3.14^{2}\cdot 9.8\;m/s^{2}\cdot 5\;m}{8\cdot (0.010\;m^{3}/s)^{2}}}\cdot (0.31\;m)^{4}\;-\;0,5\;-\;1\right)\;=\;54\;m}
O valor obtido indica que o diâmetro mínimo está entre 300 e 310 mm. Como numa aplicação prática usam-se sempre tubos com diâmetros padronizados, a informação obtida é suficientemente exata para a escolha do diêmetro da tubulação.