Matemática elementar/Polinômios
Definição
[editar | editar código-fonte]Polinômios em uma variável são séries de monômios (ou termos) em uma variável, que por sua vez são expressões matemáticas na forma (que, no caso de n = 0, torna-se a constante a). Cada monômio é caracterizado por:
- um coeficiente, que na equação acima é representado por a;
- uma variável, que na equação é representada por x; e
- um expoente natural, que na equação é representado por n. No caso particular n = 0, considera-se que e o termo torna-se simplesmente a.
Assim, um polinômio é um conjunto de monômios, devidamente normalizados. A expressão mais correta é função polinomial, mas o uso de polinômio é consagrado. A função polinomial ou polinômio assume a forma:
A função constante, é um exemplo de função polinomial, bem como a função linear
Grau
[editar | editar código-fonte]Define-se o grau de um polinômio como igual ao expoente mais alto entre as variáveis de seus monômios não-nulos. Por exemplo, no polinômio o grau é 3, correspondente ao expoente mais alto entre as variáveis nos monômios ().
Valor numérico
[editar | editar código-fonte]É o valor que se resulta a expressão quando determina-se um valor para as variáveis.
Exemplo
2x + 1 VN = ? Para x=5
VN = 2.5 + 1 = 11,
Raízes
[editar | editar código-fonte]Raiz ou zero é um valor tal que, atribuído à variável da função polinomial, faz com que a função resulte em 0, ou seja, se a é dito raiz do polinômio P(x), então
Exemplos de raízes:
- tem raiz r = 4 (pois )
- tem raiz r igual a -1, pois
Um polinômio de grau n terá n raízes, sempre. Algumas vezes uma mesma raiz se repete, sendo por isso chamada raiz dupla, tripla, quádrupla, etc. Por exemplo:
- tem raiz dupla r igual a 2, uma vez que pode ser fatorado em
Num gráfico representativo da função polinomial, as raízes sempre ocorrem nos pontos em que a curva cruza o eixo das abcissas.
Obtenção de raízes
[editar | editar código-fonte]Identidade de polinômios
[editar | editar código-fonte]Dois polinômios são ditos idênticos se tiverem o mesmo grau e os monômios correspondentes idênticos, por exemplo:
Como o desenvolvimento de B(x) resultou num polinômio de termos correspondentes idênticos a A(x), então os polinômios são idênticos ou equivalentes; indica-se:
Polinômio nulo
[editar | editar código-fonte]Um polinômio é dito nulo quando todos os seus coeficientes são iguais a 0.
Igualdade de polinômios
[editar | editar código-fonte]Diz-se que os polinômios e são iguais quando para todo
Operações
[editar | editar código-fonte]Adição
[editar | editar código-fonte]Consideremos que tenhamos os fatores:
e
Todos constantes e com valores diferentes de zero.
Ainda temos:
que são variáveis.
Os polinômios:
e
A sua adição é efetuada como segue:
Em caso de polinômios compostos por mais de uma variável, tais quais:
e
A sua adição é efetuada como segue:
Processo:
Para fazer a soma dos polinômios de uma só variável, identificamos os monômios de mesmo expoente e somamos os fatores dos mesmos, o resultado da soma dos fatores é multiplicado pela parte variável do monômio, repete-se o processo para todos os monômios até que não haja mais fatores.
Para fazer a soma dos polinômios de várias variáveis, identificamos os monômios com variáveis iguais de mesmo expoente e somamos os fatores dos mesmos, o resultado da soma dos fatores é multiplicado pela parte variável do monômio, repete-se o processo para todos os monômios até que não haja mais fatores.
Subtração
[editar | editar código-fonte]O sinal de negativo (-)antes dos parêntese exige a troca de todos os sinais que estejam dentro dele.
(3x²-2x+5)-(5x-3)=
=3x²-2x+5-5x+3= =3x²-7x+8
Multiplicação
[editar | editar código-fonte](15x² - 10x + 2) • (3x - 2)
Nesse caso, multiplica-se todos os termos ou considere:
- (15x² - 10x + 2) = A
- (3x - 2) = B
donde,
- A • B (ou B • A)
A •B --- x
donde,
(15x² - 10x + 2) • (3x - 2) ----------------- - 30x² + 20x - 4 45x³ - 30x² + 6x + --------------------- 45x³ - 60x² + 26x -4
Portanto, o produto da multiplicação indicada será 45x³ - 60x² + 26x -4.
Divisão
[editar | editar código-fonte]Para realizar-se uma divisão de polinômios, utiliza-se um dos teoremas abaixo:
- Método de Descartes
- Método do Resto
- Método de D'Alembert
- Método de Briot-Ruffini
Teoremas
[editar | editar código-fonte]Teorema do resto
[editar | editar código-fonte]O resto da divisão do polinômio P(x) por ax + b é dado por P(-b/a)
- Exemplo de resolução 1
- Têm-se a seguinte divisão:
- 1º passo: Determina-se x
-
- 2º passo: Substitui-se os valores
Portanto, o resto é 43.
- Exemplo de resolução 2
- O resto da divisão do polinômio pelo polinômio de primeiro grau é
Teorema de D'Alembert
[editar | editar código-fonte]Um polinômio é divisível pelo polinômio de primeiro grau se e somente se,
Aplicações práticas
[editar | editar código-fonte]Equações polinomiais
[editar | editar código-fonte]Definição
[editar | editar código-fonte]Teorema Fundamental da Álgebra
[editar | editar código-fonte]Todo polinômio de uma variável com coeficientes complexos e de grau tem alguma raiz complexa. Em outras palavras, a equação polinomial tem soluções, não necessariamente distintas.
Apesar do nome pomposo, um estudo mais aprofundado da Álgebra contemporânea mostra que este resultado não é assim "tão fundamental". No entanto, no contexto das equações polinomiais, é ele quem traz a garantia de que existem soluções para esse tipo de equação.
Multiplicidade de uma raiz
[editar | editar código-fonte]Relações de Girard
[editar | editar código-fonte]Teorema das raízes complexas
[editar | editar código-fonte]Fatoração
[editar | editar código-fonte]- Lembre-se: Fatorar é simplificar uma expressão a um produto.
Existem várias formas de se fatorar um polinômio, ou seja, escrevê-lo como um produto de expressões mais simples:
- fatoração simples (ou por evidência)
- fatoração por agrupamento
- trinômios do quadrado perfeito
- e outros
Fatoração simples (ou por evidência)
[editar | editar código-fonte]Destacam-se os termos em comum, e coloca-o em evidência, colocando entre parênteses as outras parcelas entre parênteses na forma de produto, multiplicando-o com o número em evidência
- Exemplo
- ax + ay + az = a (x + y + z)
Por agrupamento
[editar | editar código-fonte]Agrupam-se os termos em comum. Quando agrupamos os termos, fazemos evidência separadamente em cada agrupamento.
- Exemplo
- ax + by + bx + ay =
- ax + ay + bx + by =
- a (x + y) + b (x + y) =
- (x + y) • (a + b)
Trinômio do quadrado perfeito
[editar | editar código-fonte]Esse já é mais complexo, pois, partiremos em etapas explicando através do exemplo.
- Fatorar a expressão
Primeiro verificamos se é um Trinômio do quadrado perfeito:
- Extrai-se a raiz quadrada dos extremos. Com efeito,
- e
- Multiplicam-se os resultados
- 5 • m = 5m
- Multiplica-se o produto obtido por dois
- 5m • 2 = 10m
Note que 10m é o valor do meio na expressão, isso prova que ela é um Trinômio do quadrado perfeito.
- Sendo trinômio do quadrado perfeito
- Sendo Trinômio do quadrado perfeito, utiliza-se a fórmula substituindo-se os valores por ordem. O binômio representará uma adição caso o sinal do meio da expressão inicial for o sinal de mais (+), ou será uma subtração caso o sinal do meio da expressão inicial for o sinal de menos (-). Com efeito,
- (m - 5)²
Esse é o valor fatorado da expressão inicial.
Equação do segundo grau
[editar | editar código-fonte]- Lembre-se: Da fórmula ax² + bx + c .
A expressão abaixo se encaixa na fórmula acima.
- x² - 8x + 15
a (x - x1) • (x - x2)
Aplica-se a fórmula da fatoração das equações do segundo grau. Onde,
- x1 = 3
- x2 = 5
Por tanto, a fatoração de tal expressão resulta em:
- 1 (x - 3) • (x - 5)
- (x - 3) • (x - 5)