Origem: Wikilivros, livros abertos por um mundo aberto.
Deduzir a relação entre a velocidade média do escoamento turbulento e o valor da velocidade no centro de um duto de seção circular, usando a lei de potências. Assumir que a lei vale inclusive para os pontos bastante próximos às paredes do tubo.
A vazão no duto será
Φ
=
∫
A
v
¯
x
d
A
=
∫
A
v
¯
r
(
2
d
D
)
1
n
d
A
=
∫
0
D
2
v
¯
r
(
2
(
D
2
−
r
)
D
)
1
n
(
2
π
r
)
d
r
{\displaystyle \Phi \;=\;\int _{A}{\bar {v}}_{x}\;dA\;=\;\int _{A}{\bar {v}}_{r}\;\left({\frac {2d}{D}}\right)^{\frac {1}{n}}\;dA\;=\;\int _{0}^{\frac {D}{2}}{\bar {v}}_{r}\;\left({\frac {2({\frac {D}{2}}\;-\;r)}{D}}\right)^{\frac {1}{n}}\;(2\pi r)dr}
Φ
=
2
n
+
1
n
π
D
1
n
v
¯
r
∫
0
D
2
(
D
2
−
r
)
1
n
r
d
r
{\displaystyle \Phi \;=\;{\frac {2^{\frac {n\;+\;1}{n}}\;\pi }{D^{\frac {1}{n}}}}\;{\bar {v}}_{r}\;\int _{0}^{\frac {D}{2}}\;\left({\frac {D}{2}}\;-\;r\right)^{\frac {1}{n}}\;r\;dr}
u
=
D
2
−
r
⇒
Φ
=
2
n
+
1
n
π
D
1
n
v
¯
r
∫
0
D
2
u
1
n
(
D
2
−
u
)
d
u
{\displaystyle u\;=\;{\frac {D}{2}}\;-\;r\;\;\;\Rightarrow \Phi \;=\;{\frac {2^{\frac {n\;+\;1}{n}}\;\pi }{D^{\frac {1}{n}}}}\;{\bar {v}}_{r}\;\int _{0}^{\frac {D}{2}}\;u^{\frac {1}{n}}\;\left({\frac {D}{2}}\;-\;u\right)\;du}
Φ
=
2
n
+
1
n
π
D
1
n
v
¯
r
∫
0
D
2
[
D
2
u
1
n
−
u
n
+
1
n
]
d
u
{\displaystyle \Phi \;=\;{\frac {2^{\frac {n\;+\;1}{n}}\;\pi }{D^{\frac {1}{n}}}}\;{\bar {v}}_{r}\;\int _{0}^{\frac {D}{2}}\left[{\frac {D}{2}}\;u^{\frac {1}{n}}\;-\;u^{\frac {n\;+\;1}{n}}\right]\;du}
Φ
=
2
n
+
1
n
π
D
1
n
v
¯
r
[
D
2
n
n
+
1
u
n
+
1
n
−
n
2
n
+
1
u
2
n
+
1
n
]
|
0
D
2
{\displaystyle \Phi \;=\;{\frac {2^{\frac {n\;+\;1}{n}}\;\pi }{D^{\frac {1}{n}}}}\;{\bar {v}}_{r}\;\left.\left[{\frac {D}{2}}\;{\frac {n}{n\;+\;1}}\;u^{\frac {n\;+\;1}{n}}\;-\;{\frac {n}{2n\;+\;1}}\;u^{\frac {2n\;+\;1}{n}}\right]\right|_{0}^{\frac {D}{2}}}
Φ
=
2
n
+
1
n
π
D
1
n
v
¯
r
[
D
2
n
n
+
1
(
D
2
)
n
+
1
n
−
n
2
n
+
1
(
D
2
)
2
n
+
1
n
]
{\displaystyle \Phi \;=\;{\frac {2^{\frac {n\;+\;1}{n}}\;\pi }{D^{\frac {1}{n}}}}\;{\bar {v}}_{r}\;\left[{\frac {D}{2}}\;{\frac {n}{n\;+\;1}}\left({\frac {D}{2}}\right)^{\frac {n\;+\;1}{n}}\;-\;{\frac {n}{2n\;+\;1}}\left({\frac {D}{2}}\right)^{\frac {2n\;+\;1}{n}}\right]}
Φ
=
2
n
+
1
n
π
D
1
n
v
¯
r
(
D
2
)
2
n
+
1
n
[
n
n
+
1
−
n
2
n
+
1
]
{\displaystyle \Phi \;=\;{\frac {2^{\frac {n\;+\;1}{n}}\;\pi }{D^{\frac {1}{n}}}}\;{\bar {v}}_{r}\;\left({\frac {D}{2}}\right)^{\frac {2n\;+\;1}{n}}\left[{\frac {n}{n\;+\;1}}\;-\;{\frac {n}{2n\;+\;1}}\right]}
Φ
=
π
D
2
2
v
¯
r
n
2
(
n
+
1
)
(
2
n
+
1
)
{\displaystyle \Phi \;=\;{\frac {\pi \;D^{2}}{2}}\;{\bar {v}}_{r}\;{\frac {n^{2}}{(n\;+\;1)(2n\;+\;1)}}}
A velocidade média do escoamento é, portanto,
v
¯
=
Φ
A
=
π
D
2
2
v
¯
r
n
2
(
n
+
1
)
(
2
n
+
1
)
⋅
4
π
D
2
{\displaystyle {\bar {v}}\;=\;{\frac {\Phi }{A}}\;=\;{\frac {\pi \;D^{2}}{2}}\;{\bar {v}}_{r}\;{\frac {n^{2}}{(n\;+\;1)(2n\;+\;1)}}\cdot {\frac {4}{\pi \;D^{2}}}}
v
¯
=
v
¯
r
2
n
2
(
n
+
1
)
(
2
n
+
1
)
{\displaystyle {\bar {v}}\;=\;{\bar {v}}_{r}\;{\frac {2n^{2}}{(n\;+\;1)(2n\;+\;1)}}}