Origem: Wikilivros, livros abertos por um mundo aberto.
Um líquido Newtoniano é um fluido incompressível com viscosidade constante. Muitos líquidos de interesse são líquidos Newtonianos. As equações básicas apresentam uma forma muito simplificada quando comparadas às equações gerais, embora não tanto quanto no caso do líquido ideal.
Portanto, para um líquido Netoniano, teremos
ρ
=
ρ
0
μ
=
μ
0
{\displaystyle \rho \;=\;\rho _{0}\qquad \mu \;=\;\mu _{0}}
Vamos aplicar essa simplificação às equações básicas em suas diversas formas (para sistemas, integral e diferencial) e obter as equações resultantes.
A equação de continuidade em forma diferencial
∂
ρ
∂
t
+
(
∇
⋅
(
ρ
v
→
)
)
=
0
{\displaystyle {\frac {\partial \rho }{\partial t}}\;+\;(\nabla \cdot (\rho {\vec {v}}))\;=\;0}
quando aplicada a um líquido Newtoniano, simplifica-se para
∇
⋅
v
→
=
0
{\displaystyle \nabla \cdot {\vec {v}}\;=\;0}
a mesma forma assumida no caso do líquido ideal.
Conforme visto anteriormente , as equações de Navier-Stokes
(
∂
∂
x
(
−
p
−
2
3
μ
(
∂
v
x
∂
x
+
∂
v
y
∂
y
+
∂
v
z
∂
z
)
+
2
μ
∂
v
x
∂
x
)
+
∂
∂
y
(
μ
∂
v
x
∂
y
+
μ
∂
v
y
∂
x
)
+
∂
∂
z
(
μ
∂
v
x
∂
z
+
μ
∂
v
z
∂
x
)
)
=
{\displaystyle \left({\frac {\partial }{\partial x}}\left(-\;p\;-\;{\frac {2}{3}}\mu \left({\frac {\partial v_{x}}{\partial x}}\;+\;{\frac {\partial v_{y}}{\partial y}}\;+\;{\frac {\partial v_{z}}{\partial z}}\right)\;+\;2\mu {\frac {\partial v_{x}}{\partial x}}\right)\;+\;{\frac {\partial }{\partial y}}\left(\mu {\frac {\partial v_{x}}{\partial y}}\;+\;\mu {\frac {\partial v_{y}}{\partial x}}\right)\;+\;{\frac {\partial }{\partial z}}\left(\mu {\frac {\partial v_{x}}{\partial z}}\;+\;\mu {\frac {\partial v_{z}}{\partial x}}\right)\right)\;=\;}
=
ρ
(
v
x
∂
v
x
∂
x
+
v
y
∂
v
x
∂
y
+
v
z
∂
v
x
∂
z
+
∂
v
x
∂
t
)
{\displaystyle \;=\;\rho \left(v_{x}{\frac {\partial v_{x}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{x}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{x}}{\partial z}}\;+\;{\frac {\partial v_{x}}{\partial t}}\right)}
(
∂
∂
y
(
−
p
−
2
3
μ
(
∂
v
x
∂
x
+
∂
v
y
∂
y
+
∂
v
z
∂
z
)
+
2
μ
∂
v
y
∂
y
)
+
∂
∂
x
(
μ
∂
v
x
∂
y
+
μ
∂
v
y
∂
x
)
+
∂
∂
z
(
μ
∂
v
z
∂
y
+
μ
∂
v
y
∂
z
)
)
=
{\displaystyle \left({\frac {\partial }{\partial y}}\left(-\;p\;-\;{\frac {2}{3}}\mu \left({\frac {\partial v_{x}}{\partial x}}\;+\;{\frac {\partial v_{y}}{\partial y}}\;+\;{\frac {\partial v_{z}}{\partial z}}\right)\;+\;2\mu {\frac {\partial v_{y}}{\partial y}}\right)\;+\;{\frac {\partial }{\partial x}}\left(\mu {\frac {\partial v_{x}}{\partial y}}\;+\;\mu {\frac {\partial v_{y}}{\partial x}}\right)\;+\;{\frac {\partial }{\partial z}}\left(\mu {\frac {\partial v_{z}}{\partial y}}\;+\;\mu {\frac {\partial v_{y}}{\partial z}}\right)\right)\;=\;}
=
ρ
(
v
x
∂
v
y
∂
x
+
v
y
∂
v
y
∂
y
+
v
z
∂
v
y
∂
z
+
∂
v
y
∂
t
)
{\displaystyle \;=\;\rho \left(v_{x}{\frac {\partial v_{y}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{y}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{y}}{\partial z}}\;+\;{\frac {\partial v_{y}}{\partial t}}\right)}
(
∂
∂
z
(
−
p
−
2
3
μ
(
∂
v
x
∂
x
+
∂
v
y
∂
y
+
∂
v
z
∂
z
)
+
2
μ
∂
v
z
∂
z
)
+
∂
∂
x
(
μ
∂
v
x
∂
z
+
μ
∂
v
z
∂
x
)
+
∂
∂
y
(
μ
∂
v
z
∂
y
+
μ
∂
v
y
∂
z
)
)
+
ρ
g
=
{\displaystyle \left({\frac {\partial }{\partial z}}\left(-\;p\;-\;{\frac {2}{3}}\mu \left({\frac {\partial v_{x}}{\partial x}}\;+\;{\frac {\partial v_{y}}{\partial y}}\;+\;{\frac {\partial v_{z}}{\partial z}}\right)\;+\;2\mu {\frac {\partial v_{z}}{\partial z}}\right)\;+\;{\frac {\partial }{\partial x}}\left(\mu {\frac {\partial v_{x}}{\partial z}}\;+\;\mu {\frac {\partial v_{z}}{\partial x}}\right)\;+\;{\frac {\partial }{\partial y}}\left(\mu {\frac {\partial v_{z}}{\partial y}}\;+\;\mu {\frac {\partial v_{y}}{\partial z}}\right)\right)\;+\;\rho g\;=\;}
=
ρ
(
v
x
∂
v
z
∂
x
+
v
y
∂
v
z
∂
y
+
v
z
∂
v
z
∂
z
+
∂
v
z
∂
t
)
{\displaystyle \;=\;\rho \left(v_{x}{\frac {\partial v_{z}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{z}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{z}}{\partial z}}\;+\;{\frac {\partial v_{z}}{\partial t}}\right)}
derivadas do princípio de conservação do momento linear, descrevem a dinâmica de um volume diferencial de fluido, juntamente com a equação de continuidade, mas são extremamente difíceis de resolver. No caso de um líquido Newtoniano, considerando-se a viscosidade constante e lançando mão da equação de continuidade
∂
v
z
∂
z
+
∂
v
x
∂
x
+
∂
v
y
∂
y
=
0
{\displaystyle {\frac {\partial v_{z}}{\partial z}}\;+\;{\frac {\partial v_{x}}{\partial x}}\;+\;{\frac {\partial v_{y}}{\partial y}}\;=\;0}
e da igualdade
∂
∂
z
(
∂
v
z
∂
x
)
=
∂
2
v
z
∂
z
∂
x
=
∂
2
v
z
∂
x
∂
z
=
∂
∂
x
(
∂
v
z
∂
z
)
{\displaystyle {\frac {\partial }{\partial z}}\left({\frac {\partial v_{z}}{\partial x}}\right)\;=\;{\frac {\partial ^{2}v_{z}}{\partial z\partial x}}\;=\;{\frac {\partial ^{2}v_{z}}{\partial x\partial z}}\;=\;{\frac {\partial }{\partial x}}\left({\frac {\partial v_{z}}{\partial z}}\right)}
∂
∂
z
(
∂
v
z
∂
x
)
=
∂
∂
x
(
−
∂
v
y
∂
y
−
∂
v
x
∂
x
)
=
−
∂
2
v
y
∂
x
∂
y
−
∂
2
v
x
∂
x
2
{\displaystyle {\frac {\partial }{\partial z}}\left({\frac {\partial v_{z}}{\partial x}}\right)\;=\;{\frac {\partial }{\partial x}}\left(\;-\;{\frac {\partial v_{y}}{\partial y}}\;-\;{\frac {\partial v_{x}}{\partial x}}\right)\;=\;\;-\;{\frac {\partial ^{2}v_{y}}{\partial x\partial y}}\;-\;{\frac {\partial ^{2}v_{x}}{\partial x^{2}}}}
a equação de Navier-Stokes referente ao eixo X se reduz a
−
∂
p
∂
x
+
μ
0
(
−
2
3
⋅
0
+
2
∂
2
v
x
∂
x
2
+
∂
2
v
x
∂
y
2
+
∂
2
v
y
∂
y
∂
x
+
∂
2
v
x
∂
z
2
−
∂
2
v
y
∂
x
∂
y
−
∂
2
v
x
∂
x
2
)
=
{\displaystyle -\;{\frac {\partial p}{\partial x}}\;+\;\mu _{0}\left(\;-\;{\frac {2}{3}}\cdot 0\;+\;2\;{\frac {\partial ^{2}v_{x}}{\partial x^{2}}}\;+\;{\frac {\partial ^{2}v_{x}}{\partial y^{2}}}\;+\;{\frac {\partial ^{2}v_{y}}{\partial y\partial x}}\;+\;{\frac {\partial ^{2}v_{x}}{\partial z^{2}}}\;-\;{\frac {\partial ^{2}v_{y}}{\partial x\partial y}}\;-\;{\frac {\partial ^{2}v_{x}}{\partial x^{2}}}\right)\;=\;}
=
ρ
0
(
v
x
∂
v
x
∂
x
+
v
y
∂
v
x
∂
y
+
v
z
∂
v
x
∂
z
+
∂
v
x
∂
t
)
{\displaystyle \;=\;\rho _{0}\left(v_{x}{\frac {\partial v_{x}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{x}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{x}}{\partial z}}\;+\;{\frac {\partial v_{x}}{\partial t}}\right)}
ou
−
∂
p
∂
x
+
μ
0
(
∂
2
v
x
∂
x
2
+
∂
2
v
x
∂
y
2
+
∂
2
v
x
∂
z
2
)
=
ρ
0
(
v
x
∂
v
x
∂
x
+
v
y
∂
v
x
∂
y
+
v
z
∂
v
x
∂
z
+
∂
v
x
∂
t
)
{\displaystyle -\;{\frac {\partial p}{\partial x}}\;+\;\mu _{0}\left({\frac {\partial ^{2}v_{x}}{\partial x^{2}}}\;+\;{\frac {\partial ^{2}v_{x}}{\partial y^{2}}}\;+\;{\frac {\partial ^{2}v_{x}}{\partial z^{2}}}\right)\;=\;\rho _{0}\left(v_{x}{\frac {\partial v_{x}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{x}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{x}}{\partial z}}\;+\;{\frac {\partial v_{x}}{\partial t}}\right)}
Similarmente, para os outros eixos
−
∂
p
∂
y
+
μ
0
(
∂
2
v
y
∂
x
2
+
∂
2
v
y
∂
y
2
+
∂
2
v
y
∂
z
2
)
=
ρ
0
(
v
y
∂
v
x
∂
x
+
v
y
∂
v
y
∂
y
+
v
z
∂
v
y
∂
z
+
∂
v
x
∂
t
)
{\displaystyle -\;{\frac {\partial p}{\partial y}}\;+\;\mu _{0}\left({\frac {\partial ^{2}v_{y}}{\partial x^{2}}}\;+\;{\frac {\partial ^{2}v_{y}}{\partial y^{2}}}\;+\;{\frac {\partial ^{2}v_{y}}{\partial z^{2}}}\right)\;=\;\rho _{0}\left(v_{y}{\frac {\partial v_{x}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{y}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{y}}{\partial z}}\;+\;{\frac {\partial v_{x}}{\partial t}}\right)}
−
∂
p
∂
z
+
μ
0
(
∂
2
v
z
∂
x
2
+
∂
2
v
z
∂
y
2
+
∂
2
v
z
∂
z
2
)
+
ρ
0
g
=
ρ
0
(
v
x
∂
v
z
∂
x
+
v
y
∂
v
z
∂
y
+
v
z
∂
v
z
∂
z
+
∂
v
z
∂
t
)
{\displaystyle \;-\;\;{\frac {\partial p}{\partial z}}\;+\;\mu _{0}\left({\frac {\partial ^{2}v_{z}}{\partial x^{2}}}\;+\;{\frac {\partial ^{2}v_{z}}{\partial y^{2}}}\;+\;{\frac {\partial ^{2}v_{z}}{\partial z^{2}}}\right)\;+\;\rho _{0}g\;=\;\rho _{0}\left(v_{x}{\frac {\partial v_{z}}{\partial x}}\;+\;v_{y}{\frac {\partial v_{z}}{\partial y}}\;+\;v_{z}{\frac {\partial v_{z}}{\partial z}}\;+\;{\frac {\partial v_{z}}{\partial t}}\right)}