Saltar para o conteúdo

Guia de problemas matemáticos/Geometria plana/Flecha de arco capaz

Origem: Wikilivros, livros abertos por um mundo aberto.

Se um segmento AB tem 2 cm de comprimento, então calcule o comprimento da flecha do arco capaz de 135° desse segmento.

As soluções

[editar | editar código-fonte]

Antes de mais nada, vamos atentar para a definição de Arco Capaz:


"Dado um segmento AB e um ângulo k, pergunta-se: Qual é o lugar geométrico de todos os pontos do plano que contém os vértices dos ângulos cujos lados passam pelos pontos A e B sendo todos os ângulos congruentes ao ângulo k? Este lugar geométrico é um arco de circunferência denominado arco capaz." [1]


Então, pela definição de arco capaz e pelo enunciado, podemos imaginar a seguinte imagem:

Imagem 1.

Na imagem acima, o segmento de reta AB tem 2 cm de comprimento, mede 135° e o arco capaz de 135° do segmento AB é o arco AB (em vermelho). O problema pede o comprimento da flecha desse arco, que é exatamente o comprimento do segmento DC. Eu conheço duas soluções para esse problema. Uma mais exata, com mais cálculos, e outra mais intuitiva, com menos cálculos. Vamos à primeira!

Primeira solução

[editar | editar código-fonte]

Como vê-se na imagem acima, quaisquer que sejam os ângulos que possuam extremidades em A, B e no arco AB, eles terão a medida de 135°. Na mesma imagem, foi representado um desses ângulos que, quando dividido pelo segmento DC, fica partido em dois ângulos iguais de graus cada um. Um desses ângulos partilhados é ACD = . Como DA = 1 cm e o ângulo CDA é reto, podemos cacular o comprimento de DC utilizando um pouco de trigonometria:

Como e, dessa maneira, está no 1º quadrante e possui tagente positiva, vamos utilizar a fórmula da bissecção de arcos para encontrar o valor da e assim, terminar o problema:

Como 135° = 90° + 45°, tem-se que 135° está no segundo quadrante, e o valor de seu cosseno é exatamente o oposto do cosseno de 45°, ou seja, . Agora, é só substituir o dado na equação acima:



Agora, temos que a será o inverso da . Assim sendo:


E terminamos o problema.

Segunda solução

[editar | editar código-fonte]

Essa solução é um pouco mais intuitiva. Podemos então traçar vários segmentos de comprimento igual a CB: do ponto B ao ponto F, do ponto F ao ponto H, do ponto H ao ponto G, do ponto G ao ponto I, de I a E e de E a A, de modo que todos os ângulos assim formados sejam de 135°. Sendo assim, formamos quatro triângulos iguais. Perceba que o lado AB do triângulo ACB é igual a HB, a HI e a IA. Formaos, então, um quadrado ABHI, inscrito na circunferência. O lado desse quadrado é 2 cm, e o raio da circunferência será igual a cm. Tudo isso está ilustrado na figura adiante:

Imagem 2

Agora, atente para o seguinte: a flecha do arco AB, é igual a DC, certo? Mas, perceba também que o segmento DC satisfaz a seguinte relação:

Como OC é igual ao raio da circunferência e OD é igual à metade do lado do quadrado ABHI, finalmente:


E o problema termina.


Caso você tenha uma outra solução, sinta-se livre para editar o artigo, apenas utilize a aba "Discussão" para discutir as soluções antes de alterar o tópico. Sinta-se livre também para comentar, criticar ou sugerir qualquer coisa.

Agradecimentos

[editar | editar código-fonte]
  • A Ângelo Alberto de Castro Almeida, que me enviou esse e outros vários problemas do CACN, juntamente com suas soluções, colaborando para o desenvolvimento do Guia.


  1. Jader Otávio Dalto, Sônia F. L. Toffoli e Ulysses Sodré, in Matemática Essencial: Geometria: Círculo, circunferência e arcos.