Logística/Gestão de armazéns/Configuração de áreas de armazenagem contínuas/Um produto: diferenças entre revisões

Origem: Wikilivros, livros abertos por um mundo aberto.
[edição não verificada][edição não verificada]
Conteúdo apagado Conteúdo adicionado
criação
actualização
Linha 1: Linha 1:
{{Nav2|'''[[Logística/Gestão de armazéns/Configuração de áreas de armazenagem contínuas|Configuração de áreas de armazenagem contínuas]]'''||[[../Dois produtos/]]|}}
{{Nav2|'''[[Logística/Gestão de armazéns/Configuração de áreas de armazenagem contínuas|Configuração de áreas de armazenagem contínuas]]'''||[[../Dois produtos/]]|}}

[[Imagem:Planta de um armazém existente.JPG|thumb|400px|right|Figura 1: Planta de um armazém]]

[[Imagem:Curvas de nível de um armazém existente.JPG|thumb|400px|right|Figura 2: Curvas de nível de um armazém existente]]


O ''layout'' de armazém pode ser representado como uma região contínua assim sendo, é necessário estudar o ''layout'' contínuo de um armazém. O [[w:Projeto|projecto]] de ''layout'' é, em muitos dos casos, destinado a um armazém já existente. Para estudar o ''layout'' contínuo de armazém considera-se um armazém com as dimensões de <math>\ 200 ft * 150 ft</math> com uma única porta, como se mostra na Figura 1.
Utilizando armazenagem aleatória, o espaço necessário num armazém é de <math>\ 18 000 ft^2</math> ou de <math>\ 27 500 ft^2</math>, assume-se que a [[w:Probabilidade|probabilidade]] de movimentação do material entre a porta e qualquer ponto do armazém é a mesma e que as deslocações são rectilíneas ([[Logística/Referências#refbFrancis|Francis et al., 1992, p. 296-299]]).

A partir das curvas de nível (k) representadas dentro de um armazém existente é possível verificar três diferentes áreas (A) como se pode ver na Figura 2:
*A área representada a amarelo aplica-se a armazéns que não excedam <math>\ 10 000ft^2</math>;
*A área representada a laranja aplica-se a armazéns entre os <math>\ 10 000ft^2</math> e <math>\ 20 000ft^2</math>;
*A área representada a vermelho aplica-se a armazéns entre os <math>\ 20 000ft^2</math> e <math>\ 30 000ft^2</math>.

A área de armazenagem (A) pode ser expressa em função das curvas de nível (k), através da seguinte [[w:Função|função]]:

<math>\ A =</math>

1) <math>\ k^2</math>, <math>\ 0 \le k \le 100</math>
2) <math>\ 200k - 10000</math>, <math>\ 10 \le k \le 150</math>
3) <math>\ 30000-(250-k)^2</math>, <math>\ 150 \le k \le 250</math>
Como se verifica a área a amarelo, cuja curva de nível tem forma triangular, tem base <math>\ 2k</math>, altura <math>\ k</math> e área <math>\ k^2</math>. Os valores de <math>\ k</math> variam entre os <math>\ 0</math> e <math>\ 100 ft</math> e a área entre <math>\ 0</math> a <math>\ 10 000ft^2</math>.

Na área a laranja, o ponto onde a linha intersecta a parede superior do armazém, a distância da curva de nível ao ponto de entrada/saída é a soma de <math>\ 100ft</math> percorridos paralelamente ao eixo dos y's e <math>\ (k - 100) ft</math> percorridos paralelamente ao eixo dos x's. A curva de nível varia entre os <math>\ 100</math> e <math>\ 150ft</math> e a área de armazenagem varia de <math>\ 10 000</math> a <math>\ 20 000 ft^2</math>. A forma geométrica da curva de nível pode ser representada pela união de um rectângulo de dimensões <math>\ 200ft * (k - 100) ft</math> com um triângulo de <math>\ 200ft * 100 ft</math>. Assim, a área limitada pelas curvas de nível é <math>\ 200 k - 30 000</math>.

Na área a vermelho, a área limitada pela curva de nível pode ser obtida subtraindo a área exterior à curva de nível por a área total do armazém. Cada canto do armazém fora da curva de nível tem uma forma triangular de dimensões <math>\ (250 - k) * (250 - k)</math> assim, a área é igual à área do armazém (30 000) menos a soma das áreas dos dois cantos <math>\ ((250 - k)^2)</math>. Os valores de <math>\ k</math> variam entre <math>\ 150</math> a <math>\ 250ft</math> e a área entre <math>\ 20 000</math> a <math>\ 30 000 ft^2</math>.
[[Imagem:Área de armazenagem de 18 000 ft^2.JPG|thumb|400px|right|Figura 3: Área de armazenagem de 18 000 <math>ft^2</math>]]

Resolvendo a função da área de armazenagem (<math>\ A = 200 k - 30 000</math>) em ordem a <math>\ k</math>, ao substituir <math>\ A</math> por 18 000 fica <math>\ k</math> igual a <math>\ 140 ft</math> como se verifica na Figura 3.

[[Imagem:Área de armazenagem de 27 500 ft^2.JPG|thumb|400px|right|Figura 4: Área de armazenagem de 27 500 <math>ft^2</math>]]

Resolvendo agora a função da área de armazenagem (<math>\ A = 30 000 - (250 - k^2)</math>) em ordem a <math>\ k</math>, ao substituir <math>\ A</math> por 27 500 fica <math>\ k</math> igual a <math>\ 200 ft</math> como se verifica na Figura 4.

== Cálculo da distância média percorrida ==
[[Imagem:Layout de armazenagem contínua.JPG|thumb|400px|right|Figura 6: Layout de armazenagem contínua]]


Considerando locais de armazenagem discreta, a distância média percorrida na zona de armazenagem pode ser determinada somando as distâncias médias de cada produto.
A distância pode ser determinada somando as distâncias percorridas de e para todos os locais de armazenagem atribuídos a um produto, dividindo a soma pelo número de locais destinados a esse produto e multiplicando o resultado pelo número médio de movimentações efectuadas por período de tempo, pelo produto.
No caso da armazenagem contínua, a distância média pode ser obtida [[w:Integral|integrando]] a região de armazenagem e multiplicando o resultado pela [[w:Razão (matemática)|razão]] entre o número de movimentações e o espaço destinado ao produto, ou então, estabelecendo uma relação entre a área da linha de curva. Considerando que existe uma única porta, que a região de armazenagem está no primeiro e quarto quadrantes e que as movimentações são rectilíneas, é possível verificar através da Figura 6 o ''layout'' de armazenagem contínua ([[Logística/Referências#refbFrancis|Francis et al., 1992, p. 303-304]]).
Considerando uma curva de nível arbitrária k, a área envolvida (A) é igual a <math>\ k^2</math>. Logo,
<math>\ A = k^2 = q (k)</math>
<math>\ k = A^{1/2} = r (A)</math>

onde q (k) é a relação entre A e k e r (A) é a função inversa que relaciona k com A. Assim a função inversa de r (t) é dada por:

<math>\ A = q (r (t))</math>

Sendo <math>\ q (k) = k^2</math> então,
<math>\ A = r (A)^2 \Leftrightarrow r (A) = A^{1/2}</math>

Geralmente, à medida que uma curva de nível varia do valor mínimo ao máximo, a área envolvida varia do valor mínimo ao valor A. Neste caso, o valor mínimo da curva de nível pode ser obtido a partir da equação anterior, fazendo A igual a zero; o valor máximo pode ser obtido igualando a mesma equação à área de armazenagem a envolver.
A área da figura 6 é <math>\ 152 000 ft^2</math>, ao aplicar a equação <math>\ k =A^{1/2} = r (A)</math>, verifica-se que o valor mínimo de k é igual a zero e o valor máximo é <math>\ 389,8718 ft</math>.
A distância média percorrida é calculada pela seguinte expressão:

<math>\ E \left [ R \right ] </math> = <math> \int_{R} {T \over A} f (x)\, dx </math> = <math>{T \over A}</math> <math>\ \int_{r(0)}^{r(A)} q'(k)\, dk </math>

Onde E[R] é a distância média percorrida na região de armazenagem R, T é o número de movimentações, <math>\ f (X)</math> é a distância média por viagem.

Sendo que a função distribuição para a distância percorrida é dada por <math>\ q (k) / A</math>, então a função densidade é dada por <math>\ q' (k) / A</math> para r (0) ≤ k ≤ r (A).
Considerando a equação anterior no cálculo da distância média percorrida, aplicada ao exemplo da Figura 6 tem-se:

<math>\ E \left [ R \right ] </math> = <math>\ {T \over A} \int_{0}^{A^{1/2}} (2k)k\, dk</math> = <math>\ {2T \over 3} A^{1/2}</math>

Logo, para a movimentação de uma unidade por minuto e uma área de <math>\ 152 000 ft^2</math>, <math>\ E[R] = 259,9145 ft/min</math>.


{{AutoCat}}
{{AutoCat}}

Revisão das 16h40min de 31 de maio de 2010